Регистратор высокочастотных импульсов

PD-Analyzer/3P

Руководство по эксплуатации

г. Пермь

Оглавление

1.	Введ	дение	4
	1.1.	Назначение	4
	1.2.	Технические характеристики прибора «PD-Analyzer/3P»	5
	1.3.	Порядок выполнения работ	6
	1.4.	Разъемы прибора	6
	1.5.	Режимы работы светодиодов	7
	1.6.	Датчики измерения ЧР и дополнительные принадлежности	7
2.	Обш	ие вопросы проведения измерений частичных разрядов	15
	2.1.	Параметры частичных разрядов	15
	2.2.	Алгоритмы работы прибора	16
	2.3.	Локация	28
	2.4.	Рефлектографирование	29
3.	Про	граммное обеспечение INVA Portable	31
	3.1.	Состав и назначение ПО	31
	3.2.	Требования к компьютеру	31
	3.3.	Установка программного обеспечения	31
	3.4.	Запуск программного обеспечения	31
	3.5.	Работа с программой	32
	3.6.	Настройка прибора	34
	3.7.	Проведение измерений	39
	3.8.	Просмотр данных	41

1. Введение

1.1. Назначение

Измеритель частичных разрядов «PD-Analyzer/3P» (далее по тексту - прибор) предназначен для регистрации и анализа распределения частичных разрядов в изоляции высоковольтного оборудования различного типа.

Наличие в приборе максимального возможного комплекта аппаратных и программных средств отстройки от импульсных помех, делают данный прибор одним из самых эффективных из имеющихся в настоящее время на рынке.

Пользователь может самостоятельно конфигурировать измерительную часть прибора, для работы в режиме реального времени, используя:

- анализ формы каждого импульса;

амплитудную фильтрацию;

- разницу во времени прихода импульсов по каналам (анализ времени прибытия – «time of arrival»), с разрешением в 2 нс;

- контроль полярности импульсов по нескольким каналам одновременно,

- встроенные каналы контроля шумовых сигналов.

Уникальной отличительной особенностью прибора «PD-Analyzer/3P», отсутствующей в приборах производства других фирм, является наличие встроенной экспертной системы «PD-Expert». Использование в «PD-Expert» набора различных способов представления и анализа распределения частичных разрядов, включая «PD-Cloud», а также наличие встроенной базы образов дефектов, позволяет выявлять и дифференцировать различные типы и места возникновения дефектов в изоляции.

Прибор марки «PD-Analyzer/3P» предназначен для использования подготовленным персоналом в условиях научных центров и лабораторий, производственных цехов и в полевых условиях.

Прибор может применяться в условиях воздействия повышенных электромагнитных полей промышленной частоты - на распределительных подстанциях.

Прибор имеет металлический защитный корпус, обеспечивающий защиту от пыли и брызг. Управление прибором осуществляется при помощи ноутбука. Настроенный при помощи ноутбука прибор может функционировать самостоятельно в режиме мониторинга.

Рисунок 1 Внешний вид прибора

Измерение производится при помощи специализированных датчиков. Конкретный тип датчика выбирается исходя из контролируемого оборудования и возможных методов подключения.

1.2. Технические характеристики прибора «PD-Analyzer/3P»

Основные технические параметры прибора приведены в таблице «Технические параметры прибора «PD-Analyzer/3P»:

Таблица 1.1 Технические параметры прибора «PD-Analyzer/3P»

Nº	Технический параметр	Значение
1.	Количество каналов регистрации ЧР, не более	3
2.	Рабочее напряжение контролируемых объектов	от 3 до 1000 кВ
3.	Интерфейс связи прибора с компьютером ¹	USB, Wi-Fi
4.	Объем памяти для хранения архива, Мб	256
5.	Частотный диапазон (HF) регистрируемых импульсов, МГц	0,1 ÷ 20,0
6.	Частотный диапазон (UHF) регистрируемых импульсов, МГц ²	450 ÷ 1500,0
7.	Внешняя синхронизация (SYNC)	0,1 - 5 B
8.	Частота внешней синхронизации	25 - 400 Гц
9.	Синхронизация с сетью по радиоканалу	Да
10.	Тип встроенного аккумулятора	Li-ion
11.	Ёмкость аккумулятора	6,8 А/час (12 В)
12.	Время работы от аккумуляторов в режиме регистрации, не менее, час	8
13.	Время полной зарядки, не более	5 часов
14		90-260 В АС 50/60 Гц
14.	папряжение питания	120-370B DC
15.	Габаритные размеры кейса прибора, мм	225x155x50
16.	Габаритные размеры кейса с датчиками, мм	546x347x197

¹ Необходимо использовать кабель с сечением 24AWG и более. Большее значение числа соответствует меньшему сечению.

² Метрологическая поверка регистратора, согласно методике поверки 651-19-016 МП, проводится в диапазоне частот 450 МГц ÷ 1200,0 МГц.

1.3. Порядок выполнения работ

Проведение подготовительных к измерениям работ производится в следующей последовательности:

- Выбор мест установки и типа используемых датчиков;
- Монтаж и подключение датчиков и прибора согласно требованиям ПТБ;
- Установка на переносной или стационарный компьютер программы INVA-Portable и USBдрайвера прибора;
- Настройка прибора согласно п.3.6;
- При использовании датчиков серии «RFCT» или «конденсатор связи» имеет смысл провести калибровку измерительных цепей.

1.4. Разъемы прибора

Рисунок 2 Лицевая панель прибора

Конструктивно прибор выполнен из двух блоков: измерительного модуля «PD-Analyzer 3» и модуля питания «PD-Analyzer PS». На лицевой панели прибора расположено множество элементов и разъемов для работы с прибором.

1 – корпус измерительного модуля прибора «PD-Analyzer 3»;

2 – SMA-разъем для подключения антенны 433 МГц, для приема сигнала от датчика PFR-2;

- 3 SMA-разъем для подключения антенны 2,4 ГГц для работы по Wi-Fi;
- 4 ВNС-разъем для подключения источника внешней синхронизации;
- 5 разъем «USB» для подключения к компьютеру;

6 — разъемы для подключения модуля питания прибора PD-Analyzer PS, левый и правый разъемы абсолютно равноправные, и предусмотрены для дальнейшего расширения функций прибора;

7 - светодиод «Статус», описывающий текущее состояние прибора;

8 - корпус модуля питания «PD-Analyzer PS»;

9 – BNC разъем с сигналом синхронизации, имеющим тот же сдвиг и фазу, что и сеть, от которой производится зарядка модуля питания в настоящий момент;

10 — разъемы для подключения измерительного модуля «PD-Analyzer 3», левый и правый разъемы абсолютно равноправные, и предусмотрены для дальнейшего расширения функций прибора;

11 – светодиод «Статус» – индикация заряда батарей.

Часть разъемов расположена на тыльной стороне прибора.

Рисунок 3 Тыльная панель прибора

12 - разъемы SMA для подключения датчиков частичных разрядов;

13 - разъем для зарядки батарей модуля питания.

1.5. Режимы работы светодиодов

Светодиод «Статус» измерительного модуля гаснет и зажигается с частотой примерно 0,5 Гц во время проведения измерений или при перезагрузке прибора, с частотой примерно 2 Гц при наличии ошибок обнаруженных в ходе самотестирования. В остальное время, при наличии питания светодиод горит постоянно, и не горит при его отсутствии.

Светодиод «Статус» модуля питания горит только во время использования и не горит, когда отсутствует подключение измерительного модуля. При подключении внешнего источника напряжения, во время процесса зарядки, светодиод переходит в режим мерцания.

1.6. Датчики измерения ЧР и дополнительные принадлежности

Стандартно на выбор предлагается три комплекта датчиков, поставляемых в отдельных кейсах:

Рисунок 4 Набор датчиков PD Sensors – CL

Набор датчиков для измерения ЧР в изоляции кабельных линий состоит из трех датчиков марки RFCT-4, тестового генератора GTI-R и токовых клещей для синхронизации с фазой сети.

Рисунок 5 Набор датчиков PD Sensors – GIS

Набор датчиков «PD Sensors - GIS» предназначен для измерения ЧР в КРУЭ и состоит из трех датчиков AES и трех фильтров OVP-1.

Рисунок 6 Набор датчиков "PD Sensors - RM"

Набор «PD Sensors - RM» состоит из трех датчиков марки CC-12/U и одного DRTD-3, и предназначен для измерения ЧР в изоляции электрических машин.

Так же, возможно использование данного прибора с другими датчиками производства ООО «Димрус», предназначенными для измерения ЧР в ВЧ и СВЧ диапазонах частот.

Ниже приведена краткая информация по основным типам датчиков, более подробную информацию можно найти на <u>сайте ООО «Димрус»</u>.

1.6.1. Датчики марок «RFCT»

Для измерений в HF диапазоне, в зависимости от необходимого внутреннего диаметра, используются датчики марок «RFCT-4» или «RFCT-5».

Внимание! Датчики устанавливаются только на элементы заземления, так как они имеют изоляцию на напряжение не более 500 Вольт.

Датчик «RFCT-4»

Этот высокочастотный датчик отличается большим внутренним диаметром и разъемной конструкцией. С целью обеспечения безопасности измерительных цепей, из-за большого сечения внутреннего сердечника, во вторичную обмотку датчика включены ограничители перенапряжений.

Рисунок 7 Датчик частичных разрядов марки «RFCT-4»

Датчик предназначен для монтажа на нейтрали трансформатора и шинах заземления оборудования. Корпус датчика разъемный - из двух частей, для удобства монтажа на элементах, имеющих жесткое крепление. Внутренний диаметр датчика, через который может проходить токоведущий элемент конструкции контролируемого оборудования, составляет 56 мм.

При монтаже на элементах оборудования, по которым протекает ток промышленной частоты более 50А, соединять половинки датчика нужно с изолирующей прокладкой толщиной до 3 мм. Это нужно делать для того, чтобы избежать насыщения сердечника. Чем больше будет ток промышленной частоты, который протекает по элементу конструкции оборудования, на котором смонтирован датчик, тем больше должен быть немагнитный и не проводящий зазор. В линейке датчиков RFCT производства ООО «Димрус» присутствуют датчики со встроенными изолирующими прокладками, рассчитанные на работу без насыщения при токах до 1000А.

Для повышения чувствительности системы измерения ЧР в кабельных линиях на всех заземлениях экрана контролируемых кабельных линий, на которых не установлены датчики, рекомендуем устанавливать фильтр высоких частот типа HFS или «PD-

Filter».

Датчик ЧР марки «DRTD-3» для измерений в статорах электрических машин

Рисунок 8 Датчик DRTD-3

Датчик «DRTD-3» предназначен для регистрации частичных разрядов в обмотках статоров крупных электрических машин, генераторов и высоковольтных электродвигателей.

При использовании для регистрации частичных разрядов в изоляции обмотки статора термометров сопротивления, встроенных в пазы статора между секциями обмотки и предназначенных для контроля температуры обмотки, необходимо использовать датчики марки «DRTD-3».

Датчик состоит из трех малогабаритных высокочастотных трансформаторов серии «RFCT-3», залитых компаундом в отдельные корпуса, и расположенных на одной плате с винтовыми клеммами. Каждый модуль датчика включается в разрыв проводов, идущих от одного термометра сопротивления внутри обмотки к измерительному прибору контроля температуры. Соединительных проводов от каждого датчика внутри обмотки статора может быть три или четыре, в зависимости от используемой схемы включения термометров сопротивления.

Высокочастотные сигналы от частичных разрядов в изоляции обмотки статора наводятся в самом термометре сопротивления и в соединительных проводах, проложенных внутри паза статора между секциями обмотки. Благодаря наличию высокочастотного трансформатора тока измерительные цепи контроля частичных разрядов гальванически не связаны с измерителем температуры. Сигналы от частичных разрядов с выхода трансформатора тока по коаксиальному кабелю передаются в измерительный прибор для регистрации и анализа.

Монтировать датчик «DRTD-3» желательно максимально близко к месту выхода проводников от термометров сопротивления из корпуса статора электрической машины, чтобы максимально избежать затухания сигналов от частичных разрядов в соединительном кабеле. Плату датчика «DRTD-3» необходимо обязательно заземлять, используя для этого специальное крепежное отверстие.

Если термометр сопротивления подключен по трехпроводной схеме, то нужно не задействовать нижние клеммы. Необходимо помнить, что нельзя изменять последовательность жил кабеля на входе и выходе датчика, чтобы не нарушить работу прибора измерения температуры.

Для проведения калибровки датчиков типа «DRTD-3» необходимо использовать отключенный режим работы электрической машины, хотя само подключение датчика можно производить и в процессе работы оборудования.

1.6.2. Конденсаторы связи

Основное назначение измерительных конденсаторов связи марки «CC» (Coupling Capacitor) – регистрация частичных разрядов в высоковольтных цепях. Конденсаторы связи марки «CC» монтируются рядом с контролируемым оборудованием и являются единственным типом датчиков, которые непосредственно и гальванически подключаются к высоковольтным цепям.

DIMRUS

Высоковольтный измерительный конденсатор связи представляет собой набор достаточно большого количества последовательно включенных конденсаторов, что необходимо для получения высокого рабочего напряжения. Обычно такой интегральный конденсатор является верхним плечом емкостного делителя напряжения. Нижнее плечо измерительного делителя может быть смонтировано непосредственно внутри конденсатора связи, а чаще всего является внешним дополнительным элементом. Иногда в качестве нижнего плеча делителя напряжения могут быть использованы входные цепи измерительного прибора.

Рисунок 9 Конденсатор связи марки CC-12/U

Отличительным параметром конденсаторов связи марки «CC-XX/U» является повышенная внутренняя емкость, значительно превышающая емкость конденсаторов связи марки «CC-XX/M».

Это является достоинством для конденсаторов связи, так как благодаря этому значительно повышается реальная чувствительность систем регистрации и анализа частичных разрядов в изоляции высоковольтного оборудования.

Вторым достоинством использования конденсаторов связи повышенной емкости является то, что при проведении регистрации существенно снижается вредное влияние высокочастотных помех, которые наводятся на сигнальные кабели и входные цепи измерительных приборов.

1.6.3. СВЧ (UHF) антенны

Рисунок 10 СВЧ антенны

На рисунке «рисунок 10» показаны антенны, применяемые в приборе для приема радиосигналов в UHF диапазоне. Данные антенны могут быть применены для обследования оборудования ОРУ, подвесной изоляции ВЛ.

- 1. Логопериодическая направленная антенна, направляемая на исследуемый объект.
- 2. Универсальная ненаправленная штыревая телескопическая антенна.

В КРУЭ в качестве антенн, могут выступать датчики, предустановленные производителем КРУЭ. При подключении к таким антеннам необходимо использование защитных элементов OVP-1 из комплекта прибора (или из комплекта датчиков встроенных в КРУЭ).

Рисунок 11 Т-коннектор N-type, с фильтром низких частот OVP-1

Если встроенных датчиков нет, но КРУЭ имеет радиопроницаемые изоляционные барьеры или окна, то в этом случае можно использовать датчики «AES» (см. рисунок 12).

Рисунок 12 Датчик марки «AES»

Необходимо помнить, что и антенны встроенные производителем КРУЭ и датчики «AES» имеют выходной сигнал в диапазоне UHF. Датчики, встроенные в КРУЭ производителем имеют большую чувствительность и помехозащищенность.

1.6.4. Токовые клещи

В ряде случаев (например, при измерении ЧР в изоляции кабельных линий) для получения сигнала синхронизации с сетью можно воспользоваться токовыми клещами.

Рисунок 13 Токовые клещи

Для этого, необходимо:

- Выбрать диапазон измерения тока так, чтобы СКЗ выходного сигнала попадало в диапазон от 0,1 до 5 В.
- 2. Подключить выход токовых клещей к измерительному модулю PD-Analyzer 3;
- 3. Включить токовые клещи при помощи поворота переключателя диапазонов измерения;
- 4. Избавиться от постоянной составляющей в выходном сигнале нажатием на кнопку «Zero».

Необходимо помнить, что сигнал тока (на входе токовых клещей) и напряжения (в объекте) имеют разный фазовый сдвиг. В кабельной линии без нагрузки он составляет -90° (+270°). Под нагрузкой фазовый сдвиг зависит от соотношения индуктивной и емкостной составляющих тока.

1.6.5. Антенны беспроводной связи

В комплект прибора входит три антенны для беспроводной связи (см. рисунок 14).

Рисунок 14 Антенны беспроводной связи

На рисунке слева-направо расположены:

- Антенна 433 МГц с SMA разъемом для подключения к SMA разъему «SYNC» измерительного модуля PD-Analyzer 3;
- Антенна 2,4 ГГц с SMA разъемом для подключения к разъему «Wi-Fi» измерительного модуля.

Антенна 1 предназначена для получения сигнала синхронизации с сетью промышленной частоты от датчика PFR-1 или PFR-2; антенна 2 предназначена для передачи данных от измерительного модуля к

ноутбуку (ПК) по беспроводному интерфейсу Wi-Fi. Если указанные функции не планируется использовать в процессе измерения, то антенны подключать не обязательно.

1.6.6. Описание приемопередатчика синхронизирующих сигналов «PFR-2»

Приемопередатчик синхронизирующих сигналов «PFR-2» (далее – приемопередатчик «PFR-2»), показанный на рисунке предназначен для передачи или приема по радиоканалу синхронизирующих сигналов. В качестве источника синхронизирующих сигналов может быть использован трансформатор напряжения (TH) или питающая сеть.

Рисунок 15 Внешний вид «PFR-2»

Приемопередатчик питается от сети переменного напряжения. Антенна встроена внутрь корпуса приемопередатчика.

2. Общие вопросы проведения измерений частичных разрядов

2.1. Параметры частичных разрядов

Частичный разряд – это искровой разряд очень маленькой мощности, который образуется внутри изоляции, или на ее поверхности, в оборудовании среднего и высокого классов напряжения. С течением времени, периодически повторяющиеся частичные разряды, разрушает изоляцию, приводя в конечном итоге к ее пробою. Обычно разрушение изоляции под действием частичных разрядов происходит в течение многих месяцев, и даже лет. Таким образом, регистрация частичных разрядов, оценка их мощности и повторяемости, а также локализация места их возникновения, позволяет своевременно выявить развивающиеся повреждения изоляции и принять необходимые меры для их устранения.

Чтобы правильно понимать принципы работы прибора необходимо определить основные термины и интегральные параметры, описывающие частичные разряды в высоковольтном оборудовании.

Все имеющиеся в мире стандарты по ЧР определяют некоторый набор интегральных величин, которые могут рассчитываться или непосредственно измеряться при тесте состояния изоляции. Стандарты разных стран могут различаться в деталях, но, в основном, в основных понятиях они совпадают.

Все стандарты по ЧР базируются на понятии «кажущийся заряд». Под «кажущимся» зарядом понимают такой заряд, который необходимо дополнительно и мгновенно «впрыснуть» в контролируемое оборудование, что бы восстановить равновесие, нарушенное возникновением «внутреннего» импульса ЧР. В этом определении очень важным является то, что мы не знаем параметры реального заряда, например, внутри газового включения, а измеряем (замеряем) реакцию контролируемого высоковольтного объекта схемы на возникший ЧР. Заряд потому и назван «кажущимся», т. к. <u>мы так считаем</u>, не зная истинного значения реального ЧР.

Измеряется кажущийся заряд ЧР в пКл (пико кулонах). Если сложить все заряды, зарегистрированные в оборудовании за одну секунду, то получится ток ЧР – тот ток, который протекает в той цепи, которую контролирует датчик, дополнительно за счет возникновения ЧР. В среднем этот ток является чисто активным и характеризует потери в изоляции из-за возникновения ЧР.

Исторически важной характеристикой является «максимальный измеренный заряд». Почти все изготовители высоковольтного оборудования до сих пор пользуются этой величиной (если вообще чемто пользуются) при приемных испытаниях. Конечно, все понимают, что нужно измерять, причем что-то статистически достоверное. В старых приборах статистика задается временем усреднения, а в современных приборах это решается удалением из рассмотрения случайных одиночных выбросов. Например, в определении американского стандарта это звучит так: «амплитуда наибольшего повторяющегося разряда при наблюдении постоянных разрядов». Следовательно, этот термин не предусматривает анализ отдельных выбросов. Чтобы сделать это определение более конкретным, ограничимся учетом только тех ЧР, которые повторяются не менее 10 раз за секунду. В нашем случае, при частоте питающей сети в 50 герц, мы получаем, что один импульс должен быть не реже, чем за 5 периодов сети. Для удобства пользования этот термин будем брать в следующей формулировке: импульс ЧР будем считать периодически повторяющимся, если частота его следования составит 0,2 импульса на один период питающей сети. Далее в тексте параметр будет отражаться как **Q**₀₂. Для удобства пользования будем делать это одинаково для любой частоты сети, 50 и 60 герц.

Ценность этого параметра достаточно высока. Многие методы диагностики базируются на нем, хотя как отдельно взятый параметр он скорее плохой, чем хороший, по крайней мере, при постоянном мониторинге под рабочим напряжением. Мы имеем много оборудования, где большие (по амплитуде) ЧР живут успешно годами, а малые, но с большой частотой повторения – означают реальную проблему.

Как посчитать потери вызванные ЧР. Это можно сделать достаточно просто, ведь физически при каждом импульсе ЧР, мы дополнительно впрыскиваем из источника испытательного напряжения в

DIMRUS

контролируемый объект «кажущийся» заряд. Заряд инжектируется мгновенно и связан с конкретным напряжением питающей сети. Значит энергия, которая дополнительно вводится в оборудование (из-за) единичного ЧР, равна заряду, умноженному на мгновенное напряжение на объекте. Далее нужно просуммировать все импульсы и получить полную энергию ЧР. Если полную энергию поделить на полное время суммирования, то получим мощность ЧР. Этот параметр называется «потери энергии на частичные разряды».

Формула:

$$P = \frac{1}{T} \times \sum_{1}^{m} Q_i \times V_i$$

где:

Р-мощность разрядов, Ватт,

Т- время наблюдения, секунд,

т-число наблюденных импульсов за время T, и

*Q*_{*i*}*V*_{*i*} – энергия і-го импульса

Вполне очевидно, что, базируясь на фазовом распределении импульсов ЧР, можно рассчитать мгновенное значение приложенного напряжения, конечно, если фазовая привязка импульсов выполнена правильно и достоверно рассчитана мощность. Однако совсем не все приборы регистрируют фазовое распределение импульсов, а если эта функция в них реализована, то используемый датчик ЧР может регистрировать импульсы ЧР с двух или даже трех фаз объекта. Какое напряжение следует брать в таком случае, с какой фазы?

Для решения этого вопроса американский стандарт по ЧР предлагает использовать еще один диагностический параметр, который чаще всего называют PDI – «Partial Discharge Intensity». В этом параметре вместо мгновенного напряжения в момент прохождения импульса ЧР, берется его действующее значение, т.е. одинаковое напряжение для всех импульсов, а не персональное для каждого. Проводя сравнительные расчеты можно убедиться, что итоговое различие параметров, рассчитанных в первом и во втором случаях, лежит в пределах 20 %. Этого вполне достаточно, что бы корректно оценить уровень и строить тренд. Параметр PDI является одним из основных, используемых для оценки интенсивности ЧР в контролируемом объекте.

2.2. Алгоритмы работы прибора

Важнейшей задачей диагностики состояния изоляции по параметрам частичных разрядов является проведение качественной оценки. Она имеет своей целью дифференцировать возможный тип дефекта, возникшего в изоляции, а в идеале и локализовать и место его возникновения.

Все известные методы и способы диагностики состояния изоляции можно объединить в две группы.

К первой группе относятся методы, базирующиеся на анализе параметров отдельных импульсов частичных разрядов. В них анализируются амплитудные и частотные параметры зарегистрированных импульсов, а также связи между импульсами, поступающими от датчиков, установленных в различных зонах контролируемого оборудования. Основное назначение методов этой группы – повышение достоверности проводимых измерений за счет более эффективной отстройки от помех.

Ко второй группе относятся методы, базирующиеся на анализе амплитудного и амплитудно – фазового распределения зарегистрированных импульсов частичных разрядов. Целью этих методов является определение типов имеющихся дефектов и оценка влияния дефектов на остаточный ресурс

высоковольтной изоляции. Это методы наиболее высокого уровня диагностики, относящиеся к экспертным системам, применяемые для получения конечных заключений о состоянии изоляции.

2.2.1. Анализ параметров частичных разрядов

При помощи методов данной группы обеспечивается необходимая достоверность проведения регистрации частичных разрядов в высоковольтном оборудовании различных типов. Все эти методы, обычно, реализованы на аппаратном уровне, заложены в измерительные приборы изготовителями технических средств.

Как уже говорилось выше, отличие современных приборов регистрации частичных разрядов от осциллографов состоит в том, что выходной информацией прибора является не осциллограмма, нуждающаяся в дополнительной экспертной оценке, а итоговая информация о количестве импульсов, отвечающих определенным требованиям. Весь процесс оценки параметров импульсов происходит в приборе в режиме реального времени, в соответствии с заложенными в техническую часть прибора алгоритмами.

Чем прибор современнее, тем большее количество диагностических алгоритмов реализовано в его технической и программной части. Чем больше реализовано таких алгоритмов, большими возможностями обладает специалист. Это позволяет ему заниматься не рутинным бесконечным просматриванием осциллограмм, а диагностикой состояния изоляции в прямом ее понимании.

Рассмотрим наиболее важные способы анализа параметров частичных разрядов.

2.2.1.1. Выбор диапазона частот частичных разрядов

Одним из наиболее важных вопросов, возникающий при проведении диагностики состояния изоляции по частичным разрядам, является выбор диапазона частот, в котором предполагается проводить измерения параметров частичных разрядов. В этом вопросе, в рекомендациях различных фирм, изготовителей диагностического оборудования, существует очень широкий разброс в параметрах этого диапазона частот от сотен килогерц до гигагерц.

Вопрос выбора частотного диапазона неоднозначен, в нем есть несколько противоположных аспектов, которые попробуем рассмотреть.

а) Параметры «кажущегося» частичного разряда.

Чтобы ответить на один аспект этого вопроса, необходимо вспомнить, какие электрические параметры мы измеряем, что мы считаем «измеренным частичным разрядом». Естественно, что мы не можем провести «прямые» измерения параметров частичных разрядов в изоляции. Сложностью является то, что разряды обычно происходят не только внутри корпуса оборудования, но и даже внутри самой изоляции. Кроме того, напряжения, с которыми работает контролируемое оборудование, бывает настолько большим, что ни о каких «прямых» измерениях о речи не может быть.

После каждого частичного разряда внутри оборудования из питающей сети происходит импульсная «подкачка энергии», необходимая для восстановления распределения электрического поля, искаженного разрядом. Именно этот электрический импульс мы регистрируем при помощи наших датчиков, установленных «вокруг» черного ящика, которым нам представляется контролируемое оборудование.

Из этого следует очень важное заключение. Регистрируемый импульс «от частичного разряда», конечно, имеет связь с параметрами произошедшего внутри частичного разряда, но во многом (можно сказать практически полностью) он сформирован электромагнитными параметрами контролируемого объекта. На параметры регистрируемого прибором импульса оказывают влияние многие факторы - геометрические размеры объекта, его внутренние электромагнитные связи, место возникновения дефекта.

Заключая этот, весьма поверхностный, анализ особенностей измерения частичных разрядов следует сказать следующее. Измерения в самом высокочастотном диапазоне имеют смысл только при контроле «прямого» электромагнитного излучения на подстанции при помощи зонда. При выборе частотного диапазона для проведения измерений внутри оборудования практически всегда следует ориентироваться не на параметры «истинного импульса», а на параметры «трансформированного импульса», регистрируемого снаружи объекта. При этом чаще всего оказывается, что самый высокочастотный импульс, возникший в середине кабельной линии, на концевой разделке, где мы обычно устанавливаем свой датчик частичных разрядов, будет иметь частоту не более одного мегагерца. Аналогичная картина имеет место внутри крупных электрических машин и трансформаторов.

b) Связь реальной «зоны чувствительности» датчика частичных разрядов с его рабочей частотой.

Чем выше частота высокочастотного импульса, тем с большей скоростью он затухает в неоднородной комплексной среде, в виде которой удобно представлять все крупные высоковольтные машины и аппараты. Для диагностики состояния изоляции по частичным разрядам это имеет очень большое значение.

Например, рассмотрим статор крупной электрической машины, для контроля ЧР в которых наиболее часто используют высокочастотные конденсаторы связи, подключаемые к внешним клеммам обмотки. Если частичный разряд возникает вблизи внешних клемм обмотки, то проблем с регистрацией импульса нет. Если же частичный разряд такой же интенсивности возникнет на «противоположной» части обмотки, вблизи нейтральной точки обмотки, то этот импульс будет иметь в зоне нашего датчика существенно пониженную амплитуду. Кроме того, частота импульса, за счет затухания внутри обмотки, значительно снизится. Реально это выразится в затягивании переднего фронта импульса. На практике это приведет к тому, что импульсы от одинаковых частичных разрядов, но возникших в разных частях обмотки, прибором будет интерпретироваться как импульсы различной интенсивности, со всеми вытекающими отсюда последствиями.

Отсюда следует простой диагностический признак, иногда оказывающийся практически полезным при оценке вероятного места возникновения дефекта в изоляции. Чем более высокочастотным является зарегистрированный импульс, тем ближе к датчику располагается зона его возникновения. Чем круче передний фронт импульса частичного разряда, тем выше его частота.

Такой диагностический подход продемонстрирован на рисунке «Рисунок 16». На нем, в качестве примера, приведена кабельная линия, в которой указаны три места возникновения частичных разрядов. Чем ближе к датчику возникает частичный первичному разряд, тем круче передний фронт регистрируемого импульса. Кроме того, по мере удаления от датчика, снижается амплитуда регистрируемого импульса.

Данный эффект легко можно проверить в процессе проведения калибровки измерительной цепи при помощи калибровочного генератора. Для этого необходимо калибровочный импульс инжектировать, поочередно, в начало обмотки, и

в нейтральную точку обмотки статора, и определять при этом чувствительность измерительной схемы. При этом можно достаточно точно определить количественное значение коэффициента затухания частичных разрядов в обмотке.

Получив реальное значение коэффициента затухания импульсов в обмотке, можно принять решение, допустима ли такая погрешность измерения частичных разрядов (разница в амплитудах и есть

погрешность измерения). Если разница в чувствительности составит до 20 – 30 процентов, то с такой погрешностью, наверное, можно согласиться. Если чувствительности будут различаться в несколько раз, то для практических измерений это недопустимо. Ценность таких измерений невелика.

Сразу же встает важный вопрос. Очевидно, что для каждого датчика существует зона чувствительности, в которой его использование не приводит к большой погрешности измерений, каковы размеры этой зоны? Следствием этого вопроса становится следующий вопрос, если зона чувствительности данного датчика не захватывает весь объем контролируемого оборудования, то, сколько же всего нужно таких датчиков, чтобы снять это ограничение. Понятно, что чем меньше для проведения измерений нужно датчиков, тем это лучше.

Мы подошли к самому важному вопросу, а какие же датчики, лучше, какие имеют большую зону контроля частичных разрядов в изоляции. Ответ здесь прост, чем ниже рабочая частота датчика, при прочих равных условиях, тем шире его «зона ответственности». В наибольшей мере информативны датчики серии RFCT (Radio Frequency Current Transformer), которые работают в достаточно широком диапазоне частот и позволяют контролировать частичные разряды во всем объеме высоковольтного оборудования. Конденсаторы связи марки CC (Coupling Capacitors) выделяют импульсы в более высокочастотном диапазоне. Поэтому зона их чувствительности существенно меньше.

с) Связь рабочего диапазона частот измерительной схемы регистрации частичных разрядов с диапазоном частот активных помех.

Важным параметром, определяющим желательный диапазон частот измерительной схемы, является его связь с диапазоном частот помех. Наиболее опасными, и трудно устранимыми, в трансформаторном оборудовании являются помехи от коронных разрядов.

Существует несколько различных взглядов на частотный диапазон, в котором влияние коронных разрядов наиболее сильно. Одни авторы считают, что влияние коронных разрядов максимально в диапазоне частот, меньшем, чем 5 мегагерц. Есть работы, в которых зона максимальных помех определена в частотном диапазоне от 5 до 20 мегагерц. Есть информация о том, что для того, чтобы отстроиться от помех, нужно проводить измерения в диапазоне частот, превышающем 200 мегагерц.

Сильное различие между информацией разных авторов, очевидно, обусловлено тем, что все эти исследования проводились для разных типов высоковольтного оборудования. Не существует одинаковых рекомендаций, в каждом конкретном случае необходимо проводить специальные исследования, чтобы выявить информативную частотную зону, в которой присутствуют частичные разряды, а влияние помех минимально.

2.2.1.2. Сравнение импульсов частичных разрядов по амплитуде

Один и тот же импульс от частичного разряда, возникшего внутри контролируемого оборудования, может быть зарегистрирован несколькими датчиками, установленными в разных точках. Например, разряд в высоковольтной обмотке фазы «А» силового трансформатора, будет зарегистрирован всеми тремя датчиками марки DB, установленными на ПИН высоковольтных вводов трансформатора. Этот же сигнал будет зарегистрирован датчиками, подключенными к обмотке CH или HH.

Эти сигналы, зарегистрированные несколькими датчиками от одного импульса частичного разряда, будут иметь некоторые отличия. В основном, эти отличия будут заключаться в двух параметрах. Во-первых, сигналы будут иметь разную амплитуду, т. к. при перенаводке в соседние фазы сигнал ослабиться. Во-вторых, разными датчиками сигнал зарегистрируется со сдвигом во времени. Это объясняется различием во времени движения импульса от места возникновения дефекта до места установки датчика. Эта разница может составлять десятки наносекунд.

Рассмотрим особенности использования в практике различий амплитуд сигналов, возникших от одного частичного разряда, но зарегистрированных датчиками, установленными в разных местах

контролируемого оборудования. При этом еще раз напомним, что анализ таких особенностей сигналов должен проводиться в приборе на аппаратном уровне, в режиме реального времени.

Очевидно, что при перенаводке сигнала (с одной фазы трансформатора на другую фазу, с одной секции обмотки на другую, с одной кабельной линии на другую), амплитуда наведенного сигнала меньше амплитуды первичного сигнала. Это является самым важным амплитудным признаком частичного разряда при многоканальной регистрации, при помощи которого можно уточнить, а иногда и указать точно, место возникновения дефекта в изоляции.

2.2.1.3. Оценка взаимного времени прихода импульсов

Применение данного метода базируется на простом физическом явлении – учете конечного значения скорости движения волны (электромагнитного поля) внутри контролируемого объекта.

С учетом того, что диэлектрическая проницаемость среды внутри контролируемого объекта отличается от диэлектрической проницаемости вакуума (воздуха), скорость движения волны в объекте всегда будет меньше скорости движения волны в вакууме. В среднем, можно считать, что скорость движения волны в объекте составляет 0,55 – 0,65 от скорости волны в вакууме. Отсюда следует, что один метр расстояния внутри объекта волна электромагнитного поля преодолевает за 6 – 7 наносекунд.

Данный метод локализации места возникновения дефекта в изоляции особенно эффективен при диагностике состояния изоляции кабельных линий и КРУ. Данные объекты имеют значительные линейные габариты, внутри которых можно контролировать разновременность прихода импульса к различным датчикам.

При использовании данного метода необходимо помнить, что длина соединительных линий от датчиков до измерительного прибора должна быть одинаковой. Это автоматически следует из того, что и в этих соединительных кабелях мы имеем такую же скорость движения волны электромагнитного поля.

Не лишен практического смысла вариант создания измерительной схемы, в которой длина измерительных кабелей от разных датчиков может специально выбираться не одинаковой. При этом можно создать такие условия, когда прибор будет сравнивать не «прямое» время между приходом импульсов от датчиков, а «относительное» время, когда в алгоритм определения времени прихода импульсов будет введена задержка. Уменьшая длину кабеля от одного или другого датчика, можно добиться задержки во времени прихода импульсов со знаком плюс, или минус.

2.2.1.4. Сравнение импульсов по полярности

Использование метода «разборки» импульсов на «полезные» и «шумовые» при помощи сравнения полярности является достаточно распространенным. Самое главное, что нужно понимать при этом, что физическая модель причин возникновения разницы в полярности импульсов от разных датчиков, должна быть достаточно обоснована. Нельзя просто использовать факт, что полярность, у сигнала и помехи, оказались различны, это не должно быть причиной применения метода. Необходимо понимать, что это соответствует физической картине распространения импульсов внутри контролируемого объекта.

2.2.2. Оценка состояния и диагностика дефектов изоляции по распределению импульсов частичных разрядов

В этом разделе мы попробуем рассмотреть два основных способа, наиболее часто используемых на практике для оценки степени влияния зарегистрированных частичных разрядов на надежную и безаварийную работу контролируемого высоковольтного оборудования.

Назначение этих двух диагностических методов различно. На основании анализа амплитудно – фазового распределения импульсов частичных разрядов чаще всего удается дифференцировать тип дефекта, имеющегося в изоляции высоковольтного оборудования. Такая информация, плюс подробная информация о внутренней конструкции изоляции в данном оборудовании, оказывается очень полезной для оценки опасности обнаруженного дефекта.

При помощи анализа тенденций, в изменении зарегистрированной интенсивности проявления частичных разрядов в изоляции, обычно оценивается состояние дефекта. Принимается очень важное решение, является ли дефект стационарным, или же развивающимся. Наиболее опасными являются дефекты развивающиеся, когда зона, или интенсивность, дефекта постепенно увеличивается. Наличие положительного тренда в интенсивности частичных разрядов является наиболее опасным признаком развития дефектов в изоляции.

Оба эти метода являются взаимодополняющими. Выводы одного метода позволяют расширить, или же наоборот, дифференцировать заключения, полученные с использованием другого метода.

2.2.2.1. Анализ амплитудно – фазового распределения импульсов в высоковольтном оборудовании – основа для определения типа дефекта в изоляции

Для анализа дефектов в изоляции можно использовать несколько типов «графического» представления распределения зарегистрированных импульсов частичных разрядов. Различают два наиболее часто применяемых на практике распределения: амплитудно - частотное, и амплитудно – фазовое (частотное) распределение импульсов частичных разрядов.

Рассмотрение начнем с амплитудно - частотного распределения импульсов.

По своему первичному определению амплитудно - частотное распределение высокочастотных импульсов должно показывать, какое количество импульсов данной амплитуды было зарегистрировано в процессе проведения измерений частичных разрядов. Пример такого амплитудно - частотного распределения импульсов приведен на рисунке «Рисунок 17». По горизонтальной оси графика отложены значения кажущихся зарядов зарегистрированных импульсов (или амплитуды импульсов в милливольтах), а по вертикальной оси отложены количество импульсов.

Необходимо очень хорошо понимать следующую особенность принятой здесь терминологии. Наличие в этом наименовании графика термина «частотное распределение» никак не связано с частотными свойствами зарегистрированных самих импульсов частичных разрядов. Это никак не связано ни с крутизной переднего фронта реального импульса частичного разряда, ни С длительностью этого импульса. Термин «частотное распределение» используется показывающий здесь как параметр, некоторую количественную сторону результатов, а именно количество импульсов частичных разрядов. В данном конкретном

случае здесь, на приведенном на рисунке амплитудно - частотном графике, рассматривается распределение импульсов, сгруппированных по принципу равенства амплитуд.

На этом рисунке показаны два несколько различающихся графика. График 1 соответствует интегральному распределению импульсов частичных разрядов, когда происходит суммирование импульсов по мере увеличения порогового значения амплитуды. Самую малую амплитуду «преодолели» все зарегистрированные прибором импульсы. В правой части графика находятся только те импульсы, которые имеют наибольшую амплитуду, преодолели только самые большие, по амплитуде, пороги.

График 2 соответствует другому, дифференциальному представлению распределения импульсов частичных разрядов. На нем каждому значению амплитуды соответствует зарегистрированное количество только тех импульсов, которые имели соответствующую пороговую (плюс – минус) амплитуду. Оба графика достаточно часто используются в практике анализа, для некоторых задач диагностики предпочтительнее интегральное представление распределения импульсов, для других – дифференциальное.

Более информативным является амплитудно – фазовое (частотное) представление распределения импульсов частичных разрядов. Пример такого распределения показан на рисунке «Рисунок 18».

Ha графике таком распределение показывается импульсов по амплитуде, фазовому углу напряжения питающей сети и импульсов. Такое количеству распределение полностью описывается матрицей, в которой есть строки, различающиеся по амплитуде, столбцы,

соответствующие определенным фазовым зонам питающего напряжения (от 0 до 360 «электрических» градусов). В каждой ячейке матрицы стоит число, количественно показывающее, сколько импульсов частичных разрядов с такими параметрами было зарегистрировано. Слово «частотное» в наименовании таких диаграмм часто опускают, называя их просто амплитудно – фазовыми диаграммами.

Важным является вопрос, почему частичные разряды возникают в зоне нарастания напряжения питающей сети, и практически полностью отсутствуют в зоне, где напряжение, относительно амплитудного значения, уменьшается. На рисунке «Рисунок 19» приведена информация, при помощи которой мы попытаемся, хотя бы поверхностно, проанализировать это сложное физическое явление.

На рисунке, справа вверху условно показан слой высоковольтной изоляции с типа «газовое включение» дефектом в середине. Рядом с дефектом показана условная схема замещения слоя изоляции, состоящая из трех зон, каждая из которых представлена на схеме замещения в виде отдельного конденсатора. Конденсаторы С1 и C2 показывают участки нормальной изоляции, а конденсатор Cd моделирует дефект в изоляции. На графике слева внизу показана синусоида питающего напряжения. На этом же графике показано изменение напряжения на зоне дефекта, в функции времени, и частичные разряды, которые возникают в этой зоне.

При росте приложенного к изоляции напряжения по схеме замещения изоляции начинает протекать ток, пропорциональный мгновенному значению и скорости изменения питающего напряжения. На каждом конденсаторе схемы замещения начинает возрастать напряжение, сумма напряжений на трех конденсаторах всегда равняется приложенному напряжению.

При возрастании напряжения на газовом (воздушном) включении до пробойного значения (более 3 кВ / мм для воздуха), возникают частичные разряды. В результате воздействия каждого частичного разряда падение напряжения на зоне дефекта уменьшится, а напряжение на конденсаторах С1 и С2 возрастает. Поскольку напряжение питающей сети еще растет, то напряжение на дефекте опять подрастает до пробойного напряжения, происходит новый разряд, и опять это приводит к росту напряжения на участках бездефектной изоляции.

Наступает такой момент времени, когда питающее напряжение еще растет, но поскольку оно практически полностью сосредотачивается на участках исправной изоляции, напряжение на зоне

дефекта не может вырасти до пробойного значения. Интенсивность разрядов падает и близи 90 градусов разряды прекращаются полностью.

На участке снижения питающего напряжения, от амплитудного значения до нуля, частичных разрядов в зоне дефекта не происходит, т. к. имеет место снижение напряжения на всех трех конденсаторах схемы замещения. Напряжение на зоне дефекта так же уменьшается, предпосылок для возникновения частичных разрядов от дефектов внутри изоляции нет.

В момент перехода питающего напряжения через нулевую линию напряжение на зоне дефекта не равняется нулю. Оно имеет какое – то остаточное значение с полярностью, которая соответствует распределению напряженности электрического поля в предшествующую полуволну питающего напряжения. Необходимо, чтобы напряжение питающей сети, которое уже имеет в данный момент противоположную полярность, смогло скомпенсировать остаточный заряд на зоне дефекта. В итоге это приведет к некоторому фазовому запаздыванию импульсов относительно точки перехода напряжения через ноль.

Ha рисунке «Рисунок 20» приведен случай наличия трех дефектов в изоляции, расположенных достаточно близко друг от друга, или случай распределенного дефекта. При этом общая электрическая схема замещения зоны дефекта, приведенная справа, становится более сложной. Появляются горизонтальные емкостные связи между локальными зонами дефектов, обусловленные взаимным влиянием дефектов друг на друга. При наличии нескольких дефектных 30H возникновение частичного разряда в одной дефектной зоне, практически всегда приводит к перераспределению

напряженностей электрического поля вокруг других зон дефектов, расположенных недалеко друг от друга. Это создает еще более сложную картину распределения электромагнитного поля, и, как следствие, сложную картину возникновения разрядов. Анализ фазового распределения частичных разрядов, имеющий целью выявление типа и места возникновения дефекта, в зависимости от типа и распределения дефекта, фазового угла и амплитуды приложенного напряжения питающей сети, становится более сложным.

При необходимости можно проанализировать влияние дефектных зон друг на друга, что даст возможность оценить особенности возникновения дефектов в изоляции различного оборудования. При этом следует принимать во внимание особенности исполнения изоляции, например, возникновение дефектов в зоне выхода лобовых частей из пакета статора (при локальном распределение дефектов) отличается от физической картины множественных дефектов в протяженной кабельной линии (в случае распределенной зоны дефектов в изоляции).

Такой же «прикидочный» анализ может быть использован применительно к рисунку «Рисунок 21», приведенному ниже. На нем анализируется влияние места возникновения дефекта внутри изоляции, ближе к земляному электроду, или к высоковольтному на соотношение амплитуд положительных и отрицательных импульсов частичных разрядов. В соответствии с нашим анализом смещение места возникновения дефекта внутри изоляции эквивалентно, для схемы замещения на рисунке «Рисунок 19», изменению соотношения величин емкостей С1 и С2. В результате изменяется соотношение между амплитудами положительных и отрицательных частичных разрядов.

Для примера возможностей практического применения амплитудно – фазовых диаграмм, в общем виде, рассмотрим влияние места возникновения дефекта в изоляции высоковольтного оборудования на вил амплитудно – фазового распределения импульсов частичных разрядов. Для большей наглядности проиллюстрируем этот анализ при помощи рисунка «Рисунок 21».

В слое изоляции контролируемого оборудования выделим три характерных, наиболее часто встречающихся, места возникновения дефекта:

Точка «1» — вблизи высоковольтного электрода (ввод трансформатора, жила кабеля, шина КРУ);

Точка «2» – внутри слоя высоковольтной изоляции;

Точка «3» — вблизи земляного электрода. Это может быть выравнивающий полупроводящий слой в изоляции, разделка им» потенциалом и т. л.

кабельной линии, экран муфты, элемент под «плавающим» потенциалом, и т. д.

Не вдаваясь в физические подробности возникновения разрядов на разных участках изоляции, будем, с приемлемой для нашего оценочного анализа точностью, считать, что все частичные разряды сосредоточены в двух, достаточно узких угловых зонах. Согласно пояснению к рисунку «Рисунок 21», эти зоны располагаются на участках возрастания напряжения питающей сети.

При положительном напряжении все частичные разряды имеют отрицательную полярность и сосредоточены в одной фазовой зоне, до 90 градусов (разряды с амплитудой «А-»). При отрицательном напряжении питающей сети все частичные разряды имеют положительную полярность и сосредоточены в угловой зоне до 270 градусов, (разряды с амплитудой «А+»).

Точка «1», где возник дефект изоляции, соответствует случаю, когда разряд возникает практически на высоковольтном электроде. Это классический коронный разряд, со всеми вытекающими последствиями. На положительной полуволне питающего напряжения импульсы отрицательных разрядов «А-» имеют максимальную интенсивность. На отрицательной полуволне питающего напряжения положительные разряды «А+» имеют существенно меньшую амплитуду.

Точка «З» возникновения дефекта в изоляции, на рисунке соответствует случаю, когда частичный разряд возникает вблизи, или на самом земляном электроде. В этом случае разряды во время положительного питающего напряжения (разряды с амплитудой «А-»), будут меньше, чем разряды во время отрицательной полуволны питающего напряжения (разряды с амплитудой «А-»). Данное распределение импульсов разрядов противоположно, чем при наличии в контролируемом оборудовании коронных разрядов на высоковольтном электроде. На практике это бывает при проблемах в полупроводящих слоях кабельных линий и обмоток, при утечках в лобовой части обмотки статора, при ослаблении крепления стержней обмотки статора в пазах.

Точка возникновения дефекта «2» является промежуточным вариантом, когда разряды возникают в глубине слоя изоляции. В этом случае амплитуды разрядов, (зарегистрированных на положительной, и отрицательной полуволне питающего напряжения), будут примерно одинаковыми. Такая картина распределения разрядов бывает при неправильной пропитке изоляции, наличии внутренних температурных разрушений. Если точка дефекта будет смещаться от центра в ту или иную сторону, будет изменяться соотношение амплитуд импульсов частичных разрядов в контролируемом оборудовании.

Данный анализ иллюстрирует тот факт, что только по соотношению интенсивности частичных разрядов (естественно, хорошо «отстроенных» от помех) на двух полупериодах питающей сети, можно оперативно и достаточно надежно оценить, на каком участке контролируемой изоляции высоковольтного

оборудования происходят частичные разряды, на высоковольтном электроде, или вблизи земляного электрода.

2.2.2.2. Анализ частотных свойств частичных разрядов

Много полезной дополнительной информации о природе частичных разрядов, и месте их возникновения в контролируемом оборудовании, может быть получено на основании анализа формы зарегистрированных импульсов – частотных свойств частичных разрядов в изоляции оборудования.

При этом очень важно понимать, что мы рассматриваем не свойства самого частичного разряда, а реакцию контролируемого объекта на возникший разряд. Один и тот же импульс, имеющий одинаковые параметры, но возникший в разных точках объекта, при регистрации будет иметь различные частотные параметры. Отсюда следует важное следствие, что импульсы, возникшие в одной зоне, будут иметь одни частотные свойства, а возникшие в другой зоне – другие частотные свойства. Именно это может позволить диагностам создавать диагностические правила, разделяющие импульсы по природе возникновения и локации места дефекта.

Основными частотными свойствами импульсов можно считать два параметра - частоту импульса частичного разряда, и длительность затухания колебаний.

- Частота импульса частичного разряда.

Даже в этом, на первый взгляд, простом вопросе, как и во всем практическом применении теории частичных разрядов, есть определенные сложности. Частоту импульса можно определять, следуя классической теории, по полному периоду колебания, а можно только по первой волне импульса, используя удвоенное значение длительности этой полуволны. При этом легко можно получить частоту импульса, различающуюся на 50%. Это объясняется тем, что частотные свойства импульса, на первой полуволне, а особенно на переднем фронте, существенно изменяются.

Данное обстоятельство вносит в анализ частотных свойств импульсов частичных разрядов определенный субъективизм, но не оказывает существенного влияния на диагностические возможности этого метода. Основное – применять одинаковые правила к определению частотных свойств импульсов частичных разрядов. Для оценки частоты импульса частичного разряда мы предлагаем использовать удвоенную длительность основного, первого импульса.

Это значение умножается на два, и получается период импульса частичного разряда, по которому определяется кажущаяся частота. Понятие «кажущейся частоты» здесь введено по той простой причине, что мы имеем импульсы, различающиеся длительностью переднего и заднего фронтов. Кроме того, эти импульсы являются затухающими, причем частота, по мере затухания, обычно изменяется.

- Длительность импульса частичного разряда.

Этот параметр показывает, как долго длится реакция контролируемого объекта на возникший в изоляции импульс частичного разряда.

Временной интервал от начала, и до завершения импульса, также может определяться несколькими методами. Чаще всего используется некоторое значение коэффициента затухания, например, 0,1 или 0,05. При колебательном уменьшении контролируется амплитуды импульсов. При снижении амплитуды до такого уровня, относительно амплитуды первого импульса, сигнал частичного разряда считается затухшим.

DIMRUS

Оба частотных параметра импульсов ЧР не являются стационарными, они зависят от многих других реальных параметров. Один и тот же дефект, но возникший в различных зонах контролируемого оборудования, приводит к появлению импульсов с различными частотными свойствами. Но два различных дефекта, даже возникших на одинаковом удалении от датчика, будут иметь различные частотные свойства.

На этапе регистрации импульсов практическая ценность этих параметров не столь значительна.

Необходимо «набрать» некоторое количество статистической информации, объем которой будет достаточен для обобщения свойств импульсов. Максимально эффективно частотные свойства импульсов можно использовать на этапе анализа распределения импульсов. Именно поэтому данный метод перенесен в общего раздел анализа зарегистрированных импульсов.

В этом методе все импульсы, вне зависимости от их амплитуды, необходимо разместить на статистической условной плоскости.

Осями координат этой плоскости будут: по оси Y будем откладывать, для каждого импульса, длительность (ось Y), а по оси X будем откладывать частоту импульсов.

Для удобства анализа и практического применения данного диагностического метода назовем это условную плоскость «время - частотной» плоскостью, или «TF» (Times Frequency) плоскостью.

Импульсы одной природы и места возникновения, будут сосредоточены на TF плоскости в одной локальной зоне. Импульсы другой природы и места возникновения, как и импульсы помех, будут сосредотачиваться в других зонах. Анализ распределения импульсов на плоскости позволит локализовать их параметры. Пример такой локализации импульсов приведен на рисунке «Рисунок 22».

Для более полного анализа нескольких параметров частичных разрядов можно перейти, от двухмерной ТF плоскости, к трехмерной, введя, дополнительно, в рассмотрение амплитуды импульсов, откладывая их по оси Z. В этом случае можно говорить уже о «TFA» диаграммах (Times Frequency Amplitude). Эти диаграммы позволяют еще более эффективно разделять зарегистрированные импульсы

частичных разрядов по природе и месту их возникновения, отделять их от помех.

2.2.2.3. Анализ изменения интенсивности частичных разрядов в процессе эксплуатации оборудования

23» Ha рисунке «Рисунок приведена стандартизованная кривая изменения интенсивности частичных разрядов в процессе длительной работы и старения изоляции высоковольтного оборудования. Это условная «линия жизни» изоляции, справедливая для большинства высоковольтного оборудования.

На первом этапе жизни изоляции, после ее изготовления, принимаются все меры для того, чтобы улучшить состояние изоляции. На этом этапе может проводиться дополнительная сушка изоляции, очистка, устранение мелких дефектов.

Период времени «2» является основным для нормально изготовленного и эксплуатируемого высоковольтного оборудования, в идеале он имеет максимальную длительность. В течение этого времени уровень частичных разрядов невелик и практически не изменяется. Оборудование эксплуатируется без ограничений, интервалы времени между проведениями измерений частичных разрядов определяются имеющимися на предприятии нормативами. Чаще всего измерения частичных разрядов в контролируемой изоляции совмещаются с проводимыми регламентными и ремонтными работами.

Период времени «3» характеризуется возникновением в контролируемой изоляции дефектов в начальных стадиях развития. Чаще всего это вызывается процессами старения изоляции, иногда механическими повреждениями верхних слоев изоляции. На этом временном этапе наблюдается устойчивый тренд в росте интенсивности частичных разрядов, от измерения к измерению количество и общая энергия частичных разрядов возрастает. Возникшие зоны дефектов расширяются. Интервалы времени между проведением измерений частичных разрядов существенно сокращаются. Величина этих интервалов между измерениями зависит от реальной скорости роста интенсивности частичных разрядов. Обычно граница этого этапа жизни высоковольтной изоляции соответствует увеличению интенсивности частичных разрядов в 4 – 8 раз.

Временной интервал «4» соответствует фазе, когда дефекты изоляции уже начинают развиваться «лавинообразно». Они уже настолько развились «в ширину», что имеются предпосылки для перехода на другой уровень деградации изоляции. Например, дорожки науглероживания изоляции по поверхности, называемые «треками», имеют настолько большую длину, что токи по ним интенсивно начинают возрастать. В результате дорожки начинают расширяться и углубляться, еще больше активизируя процесс общей деградации изоляции.

Интервал времени «5» начинается в тот момент времени, когда интенсивность частичных разрядов начинает превышать допустимое значение. Практически всегда, если не принимать специальных мер по устранению имеющихся дефектов в изоляции, работа высоковольтного оборудования на этом участке заканчивается аварийно.

Качественно кривая на рисунке «Рисунок 23» справедлива для любого высоковольтного оборудования. Количественные параметры интервалов времени, их длительность и значения интенсивности частичных разрядов, имеют большие отличия для различных типов и марок высоковольтного оборудования. Даже одинаковое оборудование, но имеющее разные годы выпуска, могут иметь допустимые значения интенсивности частичных разрядов, различающиеся в несколько раз. Обычно этот вопрос решается на основании скорости изменения интенсивности частичных разрядов. Чем быстрее растет интенсивность, тем более опасными являются эти разряды для изоляции контролируемого оборудования.

2.2.2.4. Связь интенсивности частичных разрядов с параметрами окружающей среды и режимами работы оборудования

Перед выявлением тенденций в изменении интенсивности частичных разрядов во времени необходимо убедиться, что эти изменения не связаны с режимом работы высоковольтного оборудования. Для этого необходимо попробовать выявить связь параметров разрядов с «внешними» параметрами, значения которых необходимо фиксировать при каждом проведенном измерении.

Важными являются следующие параметры:

- Влажность и температура окружающей среды. Особенно это важно при проведении измерений частичных разрядов в трансформаторах.

DIMRUS

- Параметры теплоносителя в системах охлаждения генераторов. Например, при увеличении количества водорода в системе охлаждения генератора может резко измениться уровень частичных разрядов в несколько раз. Использование водорода вместо воздуха резко снижает интенсивность частичных разрядов.

- Напряжение питающей сети, которое изменяется в значительных пределах, может также повлиять на уровень частичных разрядов. Увеличение напряжения увеличивает интенсивность импульсов.

- Рабочая температура статора электродвигателя или генератора. Интересным является то, что в зависимости от типа изоляции может иметь место положительный и отрицательный коэффициент связи интенсивности частичных разрядов с температурой.

- Нагрузка контролируемого оборудования. Связь здесь, вероятнее всего, определяется внутренним нагревом изоляции, прямой связи интенсивности частичных разрядов с нагрузкой, обычно не удается обнаружить.

2.3. Локация

Важным преимуществом при регистрации и анализе частичных разрядов в изоляции КРУЭ и кабельных линий является возможность удаленной локации мест возникновения дефектов. Если в кабельной линии возможны 2 типа локации – рефлектометрия и локация по разности времени прихода

Рисунок 24 Принцип локации по времени прихода импульсов

Источник PD = (D-0.3dt) / 2,

где dt-разность времени «прихода» импульса, нс.

импульсов, то в КРУЭ с использованием СВЧ датчиков локация возможна только по разности времени прихода импульсов.

СВЧ импульсы ЧР распространяются в КРУЭ со скоростью электромагнитной волны (скоростью света).

Скорость света = 30000000 м / с = 0,3 м / нс.

Это означает, что импульс ЧР распространяется от источника во всех направлениях со скоростью 1м за 3.3нс.

Расчет источника разрядной активности выполняется по формуле d = (D-0.3t) / 2.

Если расстояние между датчиками известно - можно провести абсолютную локацию источника ЧР относительно датчика 1 или 2.

Если расстояние между датчиками (D) неизвестно, то локация все равно возможна, только локация будет относительно центральной точки расстояния между датчиками (относительная локация).

DIMRUS

Для проведения локации источника разрядной активности необходимо проводить измерения синхронно. Каждый прибор «PD-Analyzer» проводит измерения абсолютно синхронно по всем измерительным каналам.

2.4. Рефлектографирование

Метод рефлектографии достаточно широко применяется в практике для поиска мест возникновения дефектов в кабельных линиях. Метод достаточно прост и эффективен, но и не лишен некоторых недостатков. Основными недостатками являются два. Во-первых, диагностика может производиться только на отключенной кабельной линии. Во-вторых, диагностируемый дефект в изоляции кабельной линии должен быть «развит» до такой степени, что в его зоне волновые свойства кабельной линии были изменены, только в этом случае возможно отражение (от зоны диагностируемого дефекта) части энергии тестового импульса.

При помощи прибора «PD-Analyzer», имеющего в своем составе модуль регистрации формы импульсов частичных разрядов, также возможно проведение локализации места возникновения дефектов в изоляции. Используемый при этом метод «модифицированной» рефлектографии приобретает новые свойства. Отличие данного метода рефлектографии от «стандартного» заключается в том, что в качестве тестирующего импульса используется не импульс от встроенного в прибор генератора, а импульс частичного разряда, возникающего в зоне возникшего дефекта изоляции, или даже вне ее.

На рисунке (рисунок 26) приведена иллюстрация, поясняющая использование в методе рефлектографии импульсов частичных разрядов от дефекта, являющегося источником частичных разрядов. В месте наличия дефекта кабельной линии возникает частичный разряд, и, соответственно, электромагнитный импульс. Из зоны возникновения он начнет, по кабельной линии, распространяться в обе стороны, в направлении концевых разделок кабельной линии. С одной стороны, на рисунке это слева, когда импульс достигнет датчика, то он будет зарегистрирован прибором «PD-Analyzer». Приблизившись к правому концу кабеля, в месте изменения волнового сопротивления, часть энергии импульса частичного разряда отразится, и отраженный импульс, меньшей амплитуды, будет двигаться в обратном направлении. В тот момент, когда импульс придет к левому концу кабеля, он также будет зарегистрирован прибором «PD-Analyzer».

Если, в момент прихода первого, «прямого» импульса, начнется регистрация временной формы сигналов, то временная диаграмма по этому каналу будет иметь примерно такой вид, как это показано на рисунке. Основной интерес, для диагностики места возникновения дефекта, на этой диаграмме имеет временное запаздывание второго, отраженного импульса, от первичного импульса. Количественно, это время было затрачено «отраженным» импульсом на движение, от места возникновения, к правому концу кабеля, и возвращению обратно до зоны возникшего дефекта. Движение от зоны дефекта к левому концу кабеля у каждого импульса занимает одинаковое время, т. е. не изменяет время запаздывания.

Точная диагностика места возникновения дефекта в кабельной линии, при практическом применении метода, затрудняется по нескольким причинам.

Во-первых, скорость движения электромагнитной волны в кабельной линии различна у кабелей различной марки. Основная причина такого различия – различные свойства диэлектриков и конструктивные отличия кабельных линий. Из-за этого при одинаковом времени запаздывания прихода «второго импульса», место расположения дефекта в кабельных линиях может изменяться, в зависимости от скорости движения импульса.

Во-вторых, реальная рефлектограмма может по форме отличаться от идеальной, приведенной на рисунке (рисунок 26). На «полезные» сигналы от дефекта накладываются отражения от соединений, муфт. Для устранения влияния этого эффекта можно, при первичной калибровке прибора, записывать «опорную» рефлектограмму, снятую классическим способом. По этой рефлектограмме можно уточнить скорость распространения импульсов в данном кабеле, и место расположения муфт. Затем, в процессе эксплуатации прибора, при возникновении реальных импульсов в линии, запускается рефлектометр, и картины распределения импульсов сопоставляются. Зная точные расстояния до мест соединений можно даже уточнить место дефекта.

В-третьих, измерение временного распределения импульсов в кабельной линии, под рабочим напряжением, обычно, усложняется наличием большого количества помех. Для подавления случайных помех прибор «PD-Analyzer» выбирает в качестве места дефекта наиболее повторяющееся значение.

В самом общем случае, скорость распространения импульсов частичных разрядов можно принять равной один метр за время 6 – 7 наносекунд. При длительности регистрации формы импульса равной 80 микросекунд, импульс от частичного разряда «пробегает» в кабельной линии расстояние, превышающее 13 километров. Таким образом, учитывая двукратный пробег импульсом кабельной линии, прибором «PD-Analyzer» может диагностироваться кабель общей длиной до шести километров.

Регистрация формы каждого импульса значительно увеличивает количество измеряемых данных и увеличивает сложность вычислений. Так как прибор «PD-Analyzer» измеряет с достаточной точностью время регистрации каждого импульса, то, как отражение можно рассматривать любой импульс, измеренный после первого в течение времени не большего, чем двойной «пробег» кабельной линии. Такой подход дает дополнительные преимущества – при одновременном измерении ЧР с разных сторон зона чувствительности приборов увеличивается, так как могут быть измерены те импульсы, которые бы «затухли» при распространении к одному из концов кабельной линии. Необходимо понимать, что обеспечение «одновременности» измерений вносит свою погрешность в точность локации, например, GPS – примерно 15 метров.

Достоинством данного метода (рефлектографирования) является:

- Возможность диагностика кабельных линий, находящихся под рабочим напряжением;

- Выявление возникающих дефектов изоляции кабельной линии на начальных этапах их развития.

3. Программное обеспечение INVA Portable

3.1. Состав и назначение ПО

ПО INVA Portable, используемое с прибором «PD-Analyzer/3P» состоит из двух отдельных компонентов:

- 1. Непосредственно приложение INVA Portable приложение, занимающееся загрузкой, хранением, отображением и анализом измерений прибора «PD-Analyzer».
- 2. USB-драйвер прибора.

3.2. Требования к компьютеру

Для комфортной работы с ПО INVA Portable необходим компьютер (или ноутбук) обладающий следующими характеристиками:

- Процессор Intel Core i3 и выше;
- Оперативная память 2Гб и более;
- Разрешение экрана не менее 1280х720;
- OC MS Windows 7 или более поздняя.

3.3. Установка программного обеспечения

Запустите файл InvaPortable\setup.exe из комплекта ПО и следуйте подсказкам программы – установщика. Для корректной работы приложения INVA Portable требуется Microsoft .Net Framework версии 4.0.3 и выше.

Для установки USB-драйвера прибора запустите файл USB12\InstallDriver.exe из комплекта ПО с правами администратора и следуйте подсказкам программы – установщика.

Программное обеспечение и драйвер протестировано на ОС MS Windows 7 и новее.

3.4. Запуск программного обеспечения

Для запуска найдите в меню «Пуск\Программы\Dimrus\» пункт iNVA (Portable) и нажмите на нем левую кнопку мыши.

Также, запуск программного обеспечения осуществляется двойным щелчком левой кнопки мыши на ярлыке программы «Inva (Portable)» на рабочем столе, в соответствии с рисунком рисунок 27.

Рисунок 27 Ярлык программы

Вид программы после запуска, изображен на рисунке (рисунок 28).

diMRUS

Рисунок 28 Внешний вид программы iNVA Portable

3.5. Работа с программой

Окно программы состоит из четырех областей:

- Строка меню (верхняя часть);
- Строка статуса (нижняя часть);
- Окно структуры БД (левая часть);
- Окно просмотра и анализа данных.

Строка меню содержит следующие пункты:

- «Файл» содержит команду выхода из программы, создания и загрузки архивов данных;
- «Вид» параметры внешнего вида программы;
- «Инструменты» меню выбора папки хранения данных;
- «Язык» выбор языка интерфейса программы;
- «Помощь» информация о компании-изготовителе программы и обновление программы.

Большая и наиболее важная часть работы с программой производится при помощи выбора различных элементов в окне структуры БД и проведения над ним операций при помощи выбора команды из всплывающего меню, появляющегося при нажатии правой кнопки мыши.

Структура БД – древовидная, и может содержать элементы различных типов:

- PD-Analyzer 3 корень дерева;
- Папка элемент, хранящий измерения, используется для упорядочения данных;
- Измерение содержат результирующие данные проведенного измерения;
- Файл настроек содержит настройки проведения измерений.

Непосредственно рядом с элементом «PD-Analyzer 3» при подключении прибора USB-кабелем отображается статус батареи – процесс заряда (во время зарядки), уровень заряда (без подключения внешнего напряжения) или индикация сбоя зарядки батареи.

DIMRUS

Над элементами разных типов доступны различные операции. Каждому элементу можно дописать текстовый комментарий, для этого нужно развернуть поле ввода комментария:

Рисунок 29 Inva Portable ввод комментария

Введенный комментарий будет отображаться в этом окне при повторном выборе этого элемента или во всплывающей подсказке, при наведении указателя «мыши» на этот элемент. Элементы имеющий комментарий обозначаются символом «i».

3.5.1. Меню элемента «PD-Analyzer 3»

Меню элемента «PD-Analyzer 3» содержит следующие элементы:

- «Измерение в реальном времени» измерение и отображение данных с измерительных каналов прибора на компьютере, минуя сохранение в приборе (см. п. 3.7.1);
- «Запуск одиночного измерения» эта команда осуществляет запуск однократного измерения по текущим настройкам прибора и передачу его на компьютер для дальнейшего просмотра и анализа;
- «Серия измерений» эта команда осуществляет запуск серии измерений одного за другим (см. п. 3.7.2).
- «Настройки прибора» команда позволяет загрузить из прибора в компьютер настройки прибора, используемые в текущий момент, для последующего просмотра или редактирования;
- «Калибровка» команда осуществляет запуск окна выполнения калибровки;
- «Загрузить все новые данные» по этой команде программа загружает данные всех измерений, совершенных позднее последнего сохраненного в базе измерения. Данные складываются в папку «Все данные»;
- «Загрузить данные по выбору...» по этой команде программа загружает данные всех измерений, совершенных позднее последнего сохраненного в базе измерения. Каждое измерение необходимо «перетащить» в папку назначения;
- «Настройки времени прибора» команда позволяет скорректировать текущую дату и время в приборе;
- «Параметры связи» запускает окно настройки параметров подключения к прибору;
- «Очистить память прибора» удаляет все данные измерений, сохраненные в памяти прибора;

33

• «Добавить папку» - данная команда добавляет папку для хранения данных.

3.5.2. Меню папки

Меню папки содержит все команды из меню элемента «PD-Analyzer 3» и дополнено следующими командами:

- Команда «Сохранить настройки прибора» сохраняет настройки, хранящиеся в данный момент в приборе в выбранную папку. Сохранение не производится, если отсутствует связь или настройки полностью совпадают с уже хранящимися в этой папке;
- «Вставить» вставляет ранее вырезанную папку в выбранную со всеми вложенными элементами;
- «Вставить замеры» переносит все данные из вырезанной папки в выбранную;
- Команда «Вырезать» производит вырезание папки для последующей вставки в другую;
- «Добавить папку» добавление пустой вложенной папки;
- «Переименовать» команда переименования выбранной папки;
- «Очистить папку» удаляет все данные из выбранной папки. Не удаляет вложенные папки и данные из них;
- «Удалить» удаляет папку, все хранящиеся в ней данные и вложенные папки.

3.5.3. Меню измерения

Меню измерения содержит следующие команды:

- «Открыть» выбирает измерение для просмотра (например, запись измерения в реальном времени);
- «Локация» запускает окно локации по разнице времени прибытия импульса между двумя датчиками (см. п. «Локация разрядов в КРУЭ»);
- «Диагностика» составляет диагностический отчет по выбранному измерению;
- «Удалить» удаляет данные с диска компьютера.

Файлы данных измерений и настроек можно «перетаскивать» при помощи мыши в другие папки.

3.5.4. Меню файла настроек

Меню измерения содержит следующие команды:

- «Открыть» при выборе этой команды отображается окно содержащее все настройки хранящиеся в файле, их можно изменить и записать в прибор (см. п. 3.6);
- «Удалить» удаляет файл настроек прибора с диска компьютера.

3.6. Настройка прибора

Все настройки сгруппированы в три вкладки:

- Параметры регистрации ЧР;
- Параметры сохранения и кратковременного мониторинга.
- Параметры подключения по беспроводному интерфейсу «Wi-Fi».

В правой части окна расположен ряд кнопок:

- Записать в прибор отправляет все настройки в прибор. Прибор должен быть подключен к компьютеру;
- Закрыть закрывает окно просмотра и редактирования настроек;
- Загрузить загружает настройки из внешнего файла;
- Сохранить сохраняет настройки во внешний файл;
- Помощник настройки измерения ЧР запускает окно помощи настройки измерения в зависимости от измеряемого объекта и используемых датчиков.

D	M	R	US	

Конфигурация прибора	×
Регистрация ЧР Мониторинг Параметры Wi-Fi	
Общие параметры измерения ЧР	Записать в
Синхр. с частотой сети радиоканал 🗸 50,000 🗼	прибор
Измерять 50 🛋 периодов сети Сдвигать фазу на 0 🛋 °	
Время регистрации 5120 V нс Пауза после откл. V нс	🗙 Закрыть
Частотный диапазон ЧР для НЕ УДополнительное Дополнительное усиление Авто Ураз(а) каналов ВЧ(НF) канала	🖹 Загрузить
✓ Автотригерование	
Постоянный мониторинг ЧР Настроить »	🖹 Сохранить
Параметры измерения ЧР по каждому каналу	
Общие параметры канала Дополнительные параметры	
Чувствительность 10,00 🚔 нКл/В Длина кабельной линии, м 1000 🐳	
Фаза датчика А Коэффициент укорочения 1,89	
РD3 ФРЗ Настроить фильтры »	_
	Помощник настройки измерения ЧР

Рисунок 30 Вкладка "Регистрация ЧР"

«Синхронизация с частотой сети» - синхронизация с частотой промышленной сети. В «PD-Analyzer 3»доступны следующие источники синхронизации:

- Радиоканал синхронизация по сигналу датчика PFR-1;
- Внешняя синхронизация с сетью при помощи измерения частоты сигнала, подключенного на вход «Sync» прибора;
- Свободная несвязанное с сетью измерение. Этот вид синхронизации должен использоваться только в случае отсутствия любых других источников синхронизации.

«Измерять ... периодов сети» - количество периодов промышленной частоты, в течение которых будет производиться измерение возникающих импульсов.

«Сдвигать фазу на...» - угол опережения источником внутренней синхронизации фазы А промышленной сети.

«Время регистрации импульса» - время, в течение которого регистрируется форма сигнала каждого импульса ЧР.

«Пауза после импульса» - интервал времени после «времени регистрации», в течение которого все измеренные импульсы считаются не самостоятельными, а продолжением уже измеренного.

«Частотный диапазон» - выбирается в зависимости от типа используемых датчиков. Он задается для всех каналов одновременно.

«Дополнительное усиление канала» - может использоваться для усиления импульсов малой амплитуды (увеличения чувствительности прибора) при отсутствии импульсов большой амплитуды.

Переключатель «Постоянный мониторинг PDI» должен быть включен – для того чтобы не были пропущены данные резко отличающиеся от «средних». Измерение будет запущено помимо расписания, если уровень PDI резко вырастет в N раз, и это превышение будет зафиксировано в течении не менее T секунд. Значение N вводится в поле «Запустить измерение при увеличении PDI в ... раза», значение T – в поле «длительностью...сек».

Тараметры непрерывного мон	иторинга Х
Дополнительное измерение пр	и увеличении PDI 🛛 🗸 🗸
Запустить измерение при увеличении PDI в	10,0 📮 pas(a)
в течение не менее	10 📩 сек
Время накопления PRPD	30 🗼 сек
HF Триггер	0 🛋 пКл
UHF Триггер	0 dBm
🗸 Установить	🗙 Отмена

Рисунок 31 Параметры непрерывного мониторинга

Окно «Помощника настройки измерения ЧР» помогает настроить параметры измерения и алгоритмы фильтрации. В окне помощника настройки необходимо выбрать способ использования прибора (схему установки датчиков) и задать дополнительные параметры (длины кабельных линий).

Параметры измерения ЧР	×
Шаг 1. Выберите схему контроля объекта	
Высоковольтные кабельные линии:	
Э однофазных кабеля [ВЧ датчики]	
🔿 3 трехфазных кабеля [ВЧ датчики]	
КРУЭ:	
Однофазное КРУЭ [СВЧ датчики]	
○ Трехфазное КРУЭ [СВЧ датчики]	
Электрические машины:	
🔿 1-3 внутренних антенн [датчики СВЧ диапазона]	
🔿 1-3 датчика ВЧ диапазона	
🗸 Далее » 🗙 Отме	на

Рисунок 32 Помощник настройки измерения

После работы «Помощника настройки измерения ЧР» изменяются следующие параметры:

- Включенные измерительные каналы;
- Фазы объектов, подключенных к датчикам;
- Длины контролируемых кабельных линий;
- Коэффициенты укорочения;
- Алгоритмы фильтрации;
- Время регистрации импульса;
- Пауза после импульса ЧР;
- Частотный диапазон измерения ЧР.

істрация ЧР	Монито	ринг Пар	аметрь		
панировщии	(_		Записат
ежим	Пор	асписанию	\sim	L	
	Часы	Минуты	^	Г	
1	3	0			🗙 Закр
2	6	0		L	
3	9	0		Г	
4	12	0			🖹 Загру
5	15	0			<u> </u>
6	18	0			
7	21	0			
8	0	1			En Coxpa
9	0	0		L	
10	0	0			
11	0	0			
12	0	0			
13	0	0	~		
охранение, ежим охранения По. 2 💌 й	с исходнь лностью со замер на	ими сигнала охранять а 15 💌 де	ами у		
Включи	1ТЬ ИЗМ	ерени	е ЧР		Помо настр

Все остальные параметры остаются без изменений.

Рисунок 33 Вкладка "Мониторинг"

Прибор PD-Analyzer может использоваться для кратковременного мониторинга.

В группе «Планировщик» задается расписание автоматического запуска измерений. Всего может быть задано 50 пунктов расписания. Значение «О часов, О минут» соответствует отсутствию измерения по этому пункту расписания. Также прибор может осуществлять измерения через заданный интервал времени, для этого переключатель «Режим» надо переключить из значения «По расписанию» в значение «Через интервал». Перевод прибора в режим мониторинга осуществляется переключателем «Включить измерение ЧР по расписанию».

При выполнении измерения (любого типа: в режиме мониторинга, одиночного или серии) прибор может сохранять информацию об измеренных данных в трех режимах, каждый следующий включает данные предыдущих:

- Краткое только уровни амплитуд и интенсивности без данных о распределении импульсов (для построения временных трендов);
- С параметрами импульсов в этом режиме добавляется информация о параметрах каждого импульса, использующаяся для построения распределений и анализа PD-Expert;
- С исходными сигналами в этом режиме добавляется информация о форме каждого импульса. Данный режим необходимо использовать при выполнении локации в кабельных линиях.

Прибор может осуществлять передачу данных по беспроводному интерфейсу WiFi, но параметры передачи данных должны быть предварительно установлены по интерфейсу USB.

DIMRUS

i win ypagnis riprioop	s (PD-Analyzer 5)	
егистрация ЧР Мон	иторинг Параметры Wi-Fi	
Режим работы Wi-F	i:	Записать в
🖲 Отключен (до	ступно подключение только по USB)	присор
🔿 Точка доступа	(прибор создает сеть)	
🔿 Клиент сети (г	рибор подключается к существующей сети)	🗙 Закрыть
Имя сети (SSID)	l	🔠 Загрузит
Пароль		
🗌 Показать пар	оль	
IP Net mask Gateway	192 . 168 . 1 . 254 255 . 255 . 255 . 0 192 . 168 . 1 . 1	Сохранит
Протокол обмена	MODBUS RTU \sim	
		Помощни В настройк

Рисунок 34 Параметры WiFi

По каналу WiFi прибор может передавать данные в двух режимах:

- Точка доступа;
- Клиент сети.

В режиме точки доступа прибор сам создает беспроводную сеть, к которой должен подключиться компьютер (ноутбук). При этом IP-адрес компьютера должен или входить в подсеть прибора, заданную на этой странице настроек, или должен быть настроен на автоматическое получение.

В режиме «Клиент сети» прибор подключается к существующей беспроводной сети.

Обращение к прибору может быть выполнено с любого компьютера входящего в локальную сеть, используя IP-адрес прибора.

Длина пароля должна быть от 8 до 15 символов. Длина названия беспроводной сети – не более 19 символов.

3.7. Проведение измерений

Прибор может делать два типа измерений: стандартное и быстрое (для измерения в режиме реального времени). Количество данных в «быстром» режиме меньше чем в «стандартном» поэтому результаты работы алгоритмов фильтрации и системы определения типа дефекта могут незначительно различаться. «Быстрый» режим измерения – оценочный.

Переключение между режимами производится автоматически.

3.7.1. Измерение в режиме реального времени

При выборе команды «Измерение в режиме реального времени» открывается окно просмотра данных, измерение запускается автоматически. Если в момент открытия окна измерение не может быть запущено (например, выключен датчик PFR-1) измерение должно быть запущено пользователем.

Рисунок 35 Измерение в режиме реального времени

В этом режиме отображаются данные с измерительного канала (датчика) измеренные в течение одной секунды. В правой части окна производится определение типа дефекта при помощи системы PD-Expert. В нижней части окна отображается изменение мощности сигналов ЧР за некоторый интервал времени. В левой части окна отображены данные со всех включенных в регистрацию каналов прибора.

Между 3d распределением ЧР и трендом мощности находятся кнопки управления отображением и регистрацией:

- « 🛞 » открывает меню дополнительных параметров (см. рисунок 36).
- « У» запускает измерение после остановки или приостановки.
- « приостановка измерения. При приостановке замирает только обновление трехмерного распределения. Измерение, накопление и запись не прерываются. После отмены приостановки (кнопкой запуска) отображение начинается с данных, актуальных в текущий момент.
- « У» остановка измерения. При повторном запуске измерения история (на плоскости PRPD и тренде мощности) будет очищена.

- « 🔘 » кнопка выбора измерительного канала;
- « >» запуск записи данных. При запущенной записи превращается в кнопку остановки записи и одновременно служит индикатором записи – начинает мерцать.

Амплитуда HF (3D)
20.000 нКл — —
Амплитуда UHF (3D)
dBm

Рисунок 36 Меню дополнительных параметров

Перевод шкалы из Вольт в доли Кулона корректно работает только в диапазоне частот HF после выполнения процедуры калибровки.

Правее кнопок управления расположена сводная текущая информация:

- частота источника синхронизации;
- энергия или мощность импульсов;
- амплитуда импульсов;
- количество импульсов;

Управление вращением, масштабом и перемещением графика производится аналогично режиму 3d (см. п. «3d распределение»).

3.7.2. Серия измерений

Измерения выполняются по текущим настройкам прибора. Количество сохраняемых данных также определяется настройками прибора.

Перед началом серии измерений создается новая папка, в нее помещается файл настроек прибора, затем запускается измерение. После окончания измерения программа загружает его на компьютер и запускает следующее.

Серия измерений прерывается с помощью кнопки «Прервать серию измерений».

DIMRUS

3.8. Просмотр данных

Выберите команду «Открыть» из меню измерения. В правой части окна программы откроется просмотр сохраненных данных.

В нижней части окна отобразится тренд изменения параметров ЧР во времени, по всем данным измерений, хранящимся в папке. Изменить набор отображаемых в тренде кривых можно при помощи

кнопки « В ». При выборе левой кнопкой мыши точки на тренде в верхней части открываются подробные этого данные измерения (аналогично действию команды «открыть» на этом измерении в окне структуры БД).

Рисунок 37 Просмотр тренда и амплитудно - фазового распределения ЧР

Просмотр данных одного измерения доступен в шести режимах:

- Амплитудно-фазовое распределение;
- Полное PRPD распределение за интервал времени;
- 3d;
- PDCloud;
- PD-Expert;
- Локация разрядов в кабельной линии.

3.8.1. Амплитудно-фазовое распределение

На этом распределении по вертикальной оси отложена амплитуда импульсов, по горизонтальной – фаза промышленной частоты. Каждый отдельный импульс изображается в этой координатной плоскости. Все распределение разбивается на таблицу, с определенным шагом по амплитуде и фазе. При попадании большого количества импульсов в одну ячейку таблицы все импульсы этой ячейки окрашиваются более интенсивным цветом. Цвет – это характеристика частоты возникновения импульсов со сходными амплитудными и фазовыми параметрами. Цветовая шкала приведена ниже распределений.

Выбор (приближение) одного канала осуществляется при помощи двойного нажатия левой кнопки мыши на области заголовка канала. Возврат ко всем графикам также осуществляется двойным щелчком левой кнопки мыши по области заголовка.

3.8.2. Полное PRPD распределение за интервал времени³

Вкладка «Полная PRPD за ЧЧ:ММ:СС» отображается в окне просмотра если в настройках прибора включен постоянный мониторинг ЧР. При этом в окне отображаются все импульсы зарегистрированные прибором за интервал между измерениями по расписанию. Интервал накопления отображается в заголовке для просмотра исходных данных. Просмотр данных аналогичен окну PRPD.

Рисунок 38 Полная PRPD

3.8.3. 3d распределение

Рисунок 39 3d распределение

На этом распределении также по вертикальной оси отложена амплитуда импульсов, по горизонтальной – фаза промышленной частоты. Каждый импульс отображается отдельно, на том периоде, на котором он был измерен во время регистрации ЧР. Все вместе они образуют такое же амплитудно-фазовое распределение (изображено на задней плоскости).

Приближение и отдаление графика осуществляется при помощи вращения колесика мыши, сдвиг – при помощи перемещения мыши с одновременным удержанием колесика мыши в нажатом состоянии,

³ Эти данные доступны при включении опций «Постоянный мониторинг ЧР» и «Включить измерение ЧР по расписанию» в настройках прибора

вращение - при помощи перемещения мыши с одновременным удержанием правой кнопки мыши в нажатом состоянии.

3.8.4. PD-Cloud

Вкладка «PD-Cloud» применяется для просмотра исходных данных в 3D распределении, сгруппированных по параметрам импульсов и с учетом фазы сети (см. рисунок 40). По оси абсцисс при этом откладывается фаза промышленной сети, на оси ординат – общая длительность импульса (T₂), а по оси *аппликат* – длительность первой полуволны импульса (T₁).

Для вращения трехмерной области необходимо нажать правую кнопку мыши на область графика, и удерживая ее, произвести вращение. Масштабирование графиков происходит при помощи вращения колесика мыши.

В верхнем левом углу можно выбрать канал прибора (датчик), данные которого будут анализироваться.

Рисунок 40 Окно ТТІ-распределения

При помощи трехлучевого элемента управления или перемещения области выделения на трехмерном распределении выберите интересующую область. В правой части окна будут выделены цветом импульсы, входящие в выбранную область. Импульсы не входящие в выбранную область будут закрашены серым цветом.

Непосредственно под трехмерным распределением выводится оперативное заключение системы PDExpert, для импульсов, входящих в выделенную область.

3.8.5. PD-Expert

В данном окне отображаются результаты автоматической диагностики по выбранному измерению.

Рисунок 41 PD-Expert

В окне приведен анализ областей, выбранных системой PD-Expert во всех измерительных каналах по автоматическим алгоритмам. Справа от каждой области приведено заключение о типе дефекта, возможных местах его возникновения, степени его опасности.

3.8.6. Локация разрядов в кабельной линии методом рефлектометрии

Локация производится методом TDR(Time Domain Reflectometry) путем анализа времени отражения сигнала от соединительных и концевых муфт.

Рисунок 42 Локация

В левой части окна задается «паспорт» кабельной линии – ее длина, коэффициент укорочения. Муфты и расстояния между ними задается двойным нажатием левой кнопки мыши на схеме КЛ в верхней части окна.

В правой части окна список рефлектограмм, сгруппированных по подобию формы импульса. Все схожие сигналы усредняются. Локация производится для выбранного из списка типа импульсов. Для наиболее точной локации рекомендуем выбирать импульсы с максимальной амплитудой.

Далее изображено амплитудно-фазовое распределение, на котором выбранная вами группа рефлектограмм имеет цветное отображение, все остальные импульсы - серые.

Результат автоматического расчета по усредненной форме импульсов выводится под графическим изображением КЛ и выделен красным цветом. Место расположения дефекта обозначено

«молнией» (« 🌠 ») на схеме кабельной линии. Перемещая элемент, обозначающий место расположения дефекта, можно видеть предполагаемое место начала «отражения» на рефлектограмме.

3.8.7. Локация разрядов в КРУЭ

При проведении локации самостоятельно необходимо выбрать датчики в информационной таблице параметров ЧР. Запуск локации осуществляется вызовом функции Локация ЧР (см. рисунок 43).

Локация ЧР <300 m/22 июля 2016 г. 11:58:44>		
💿 Один прибор 🔿 Два прибо	ра	
Вы	бор источника сигнала	
Источник сигнала 1	Источник сигнала 2	
🖲 Канал 1	○ Канал 1	
🔾 Канал 2	• Канал 2	
🔾 Канал 3	🔘 Канал 3	
🔾 Канал 4	🔘 Канал 4	
🔾 Канал 5	🔾 Канал 5	
🔘 Канал б	🔘 Канал б	
	Применить Отмена	

Рисунок 43 Окно выбора каналов для локации

Окно результатов локации включает в себя:

- 1. Амплитудно-фазовое распределение импульсов с 2-х выбранных приборов и каналов измерения в верхней части окна. В этих окнах есть возможность выбора отдельной группы импульсов для локации. Выбранная группа импульсов подсвечивается синим цветом. Изменить размер группы можно зажав левую клавишу манипулятора на углу выбранной зоны и перемещая его. При этом во втором окне амплитудно-фазового распределения импульсы, соответствующие по времени выбранным, отображаются цветом. Остальные импульсы не участвуют в процедуре локации и отображаются серым цветом. Существует возможность переключать группу выбора сигналов между 2-мя каналами кнопкой [<>], находящейся между графиками.
- 2. Окно распределения импульсов по длине объема КРУЭ с указанием расчетного местоположения источника разрядной активности в нижней части окна.

Рисунок 44 Окно локации разрядной активности

Для анализа и локации можно выбрать группу импульсов непосредственно на амплитуднофазовом распределении, передвигая границы выбранной области. Выбор группы импульсов можно делать как на одном (левом), так и на другом (правом) распределении ЧР.

Переключение выбора производится в окне настроек параметров локации, в котором находятся следующие пункты:

• 0	тноси	тельн	юе из	мер	ение, м
A	бсолю	тное	изме	рени	e
Макс	имал	ьное	расст	ояни	e
20					
Абсо	лютно	be pa	стоя	ние,	м
20					
Пар	аметр	ы обт	ьекта	лока	ации
Коэф	фици	ент у	короч	ени	я
Возд	цух 1,	0002	926	•	Добави
Зад	ержка	сигн	ала в	изм	ер. цепя
√ 3;	адерж	ка в	нанос	екун	дах
Заде	ржка	1, нс			
0					
Заде	ржка	2, нс			
0					
Выб	ор гру	уппы	сигна	лов	
• H	а лево	ом гра	афике	e	
— н	а прав	вом гр	рафин	æ	

локации

«Способ локации». Позволяет выбрать один из двух типов локации – относительную или абсолютную. Относительная используется в том случае, если не известна длина объекта (объема КРУЭ между датчиками) и локация производится относительно центра объекта. Абсолютная локация используется при известной длине и дает результат в абсолютах единицах, а не относительно центра.

«Максимальное расстояние» - при относительной локации этот параметр задает максимальную зону для анализа времени прихода импульсов. Импульсы с разницей по времени, которому соответствует расстояние более заданного не анализируются.

«Абсолютное расстояние» - при абсолютной локации этот параметр задает расстояние между датчиками для анализа времени прихода импульсов. Импульсы с разницей по времени, которому соответствует расстояние более заданного не анализируются.

«Коэффициент укорочения» - коэффициент, показывающий, во сколько раз скорость распространения волны в объекте меньше чем скорость света в вакууме.

«Задержка сигнала в измерительных цепях» -

позволяет задать и учесть разницу в длинах кабельных линий 2-х датчиков.

«Выбор группы сигналов» - выбор одного из 2-х амплитудно-фазовых распределений импульсов на котором будет осуществляться выбор группы импульсов для локации. Выбор группы с максимальной амплитудой импульсов и минимальным значением шумовых сигналов позволяет более точно провести анализ и локацию источника разрядной активности.

3.8.8. Панель «Параметры»

Для настройки отображения используется панель «Параметры» с правой стороны окна анализа частичных разрядов (рисунок 46).

💎 🗹 Показывать имп. после фильтрации
💿 Пользовательские фильтры 🔘 Фильтры прибора
Настройки фильтрации
🗌 Сетка 256х256
✓ Общий масштаб
Шкала в нКл
Общий фазовый сдвиг 0 🖨
Размер точки:
PD Expert
Объединять однотипные ЧР
Отображать диагностические зоны
При диагностике ЧР сдвигать фазу на 120°
Цветовая шкала
Кол-во имп. на PRPD
ДАдаптивная шкала
53.7 имп./сек.
Амплитуда HF (3D)
🗌 Адаптивная шкала
19.204 нКл
Амплитуда UHF (3D)
🖌 Адаптивная шкала
-20.0 dBm
Масштаб
П Фиксированный масштаб
Макс. НF, нКл
20.0
Макс. UHF, dBm
-20.0
Уровень шума
НГ

Рисунок 46 Панель «Параметры»

Используемые параметры имеют следующий смысл:

- «Показывать имп. после фильтрации» фильтрация шума, выделение только частичных разрядов, возможно также применение пользовательских фильтров (рисунок 47);
- 2. «Сетка 256х256» расчет импульсов по сетке;
- 3. «Общий масштаб» установка общего масштаба по всем каналам;
- 4. «Шкала в нКл» выбор размерности амплитуды ЧР, нКл или Вольт;

5. «Общий фазовый сдвиг» – используется для сдвига фазы влево при анализе.

На панели «PD Expert» располагаются параметры выбора отображения данных в режиме эксперта: «Объединять однотипные ЧР» и «Отображать диагностические зоны».

На панели «Цветовая шкала» можно использовать для настройки цветовой гаммы графиков фиксированную шкалу или адаптивную. Адаптивная шкала берет максимальное значение по каналам, а фиксированная — по заданному значению. Для амплитудно-фазового и PD-Cloud распределений в качестве значения используется количество импульсов, для 3D распределения — амплитуда импульсов. С помощью скроллера «Шаг» можно регулировать ширину зоны одного цвета.

На панели «Масштаб» можно задать фиксированный масштаб отображения графиков и его размерность по осям.

3.8.9. Фильтрация импульсов

Особенностью приборов «PDAnalyzer 3» является то, что они регистрируют импульсы на всех каналах одновременно, а после этого уже принимают решение: какой датчик был расположен ближе всего к источнику импульса. При этом если логические правила были настроены неверно, а расчетные данные о каждом импульсе сохранялись, то всегда есть возможность отменить фильтрацию сделанную прибором, и наложить новые логические правила.

На панели «Операции» переключатель «Показать импульсы после фильтрации» отвечает за количество отображаемых данных. Если выбрать «Пользовательские фильтры», то становится доступным строка «Настройка фильтрации», нажав на которую, открывается окно настройки пользовательских фильтров (рисунок 47).

Доступно три типа пользовательских фильтров: «Амплитудная фильтрация», «Фильтрация по времени прихода», «Фильтрация по времени пролета».

Фильтр по амплитуде работает следующим образом: если импульс одновременно измерен на двух или более каналах, то источником импульса является тот канал, на котором амплитуда максимальна. Необходимо выбрать каналы для сравнения, установить значение максимальной амплитуды и интервала времени сравнения.

Фильтр по времени прихода работает следующим образом: если импульс одновременно измерен на двух или более каналах, то источником импульса является тот канал, на котором он был зарегистрирован первым. То есть, мы должны для каждого канала задать каналы, с которыми мы будем сравнивать. Если ни одного канала для сравнения не выбрано, значит, фильтр для этого канала отключен.

Фильтр по времени пролета работает следующим образом: если импульс одновременно измерен на двух или более каналах, и время прихода между импульсами менее заданного в настройках фильтра, то импульс считается «истинным» и не фильтруется.

Пользовательские фильтры			-		×
Фильтры					
У Амплитудная фильтрация					
Т Фильтр по времени прихода импульса					
Т Фильтр по времени пролета импульса					
Каналы для фильтрации 📃 Все каналы		Параметры фильтра			
Nouse 4		 Амплитуда 			
канал і		Значение амплитуды	70		
📃 Канал 1		 Прочее 			
✔ Канал 2		Интервал времени, нс	100		
✓ Канал 3					
 У Канал 4					
• Канал 5					
🖌 Канал б					
Канал 2					
🖌 Канал 1					
Канал 2					
√ Канал 3	Ŧ				
Применить Отмена					

Рисунок 47 Окно настройки фильтрации импульсов

Краткая информация о фирме:

ООО «ДИМРУС» (г. Пермь)

Разработка и поставка приборов и программного обеспечения по диагностике для различных отраслей промышленности.

Россия, 614513, Пермский край, Пермский район, д. Ванюки, Шоссейный въезд, д.2

Тел./факс: (342) 212-23-18

Адреса в интернете: <u>dimrus.ru</u>

dimrus.com

e-mail: dimrus@dimrus.ru

e-mail: dimrus@dimrus.com